STATUS OF THE ASTRID PROJECT

Advanced Sodium Technological Reactor for Industrial Demonstration

ESNII+ 1ST BIENNAL CONFERENCE, BRUSSELS, MARCH 17, 2015

Nicolas DEVICTOR
Deputy program manager « Generation IV reactors »

nicolas.devictor@cea.fr
The ASTRID objectives

- Technological demonstration reactor (*a step before a First Of A Kind*)
- Integrating French and international SFRs feedback
- A GEN IV system

Safety:
- Level at least equivalent to GEN III systems
- Progresses on Na reactors specificities
- Integrating FUKUSHIMA accident feedback
- Robustness of safety demonstration

Durability:
- Need of Fast Breeder Reactors and a closed cycle
- Pu multi recycling to preserve natural resources
- The use of natural depleted uranium in France by FBRs allow producing electricity for few thousands of years

Operability:
- Load factor of 80% or more after first “learning” years
- Significant progress concerning In Service Inspection & Repair (ISIR)

Ultimate wastes transmutation:
- Realization of demonstrations on minor actinides transmutation according to June 28, 2006 French Act on Wastes Management

A mastered investment cost

Non proliferation warranty

- Irradiation services and options test
The ASTRID program

ASTRID design studies
- Integrated Technology Demonstrator 600 MW(e)
- 4th generation reactor
- Irradiation tool

Core fabrication workshop
- MOX fuel
- A few tons per year

Full scale component testing
- Large test sodium loops
- Refurbishment of zero power reactor MASURCA

Severe accidents experimental program

→ Dedicated talks by JC Garnier and in parallel sessions
ASTRID conceptual design main technical choices

- 1500 thMW - ~600 eMW
- Pool type reactor
- With an intermediate sodium circuit
- CFV core (low sodium void worth)
- Oxide fuel UO_2-PuO_2
- Preliminary strategy for severe accidents (internal core catcher…)
- Diversified decay heat removal systems
- Fuel handling in gas, internal storage
- Conical "redan" inner vessel adopted
- Preferred lay-out:
 - 3 primary pumps
 - 4 intermediate heat exchangers
 - 4 secondary circuits
 - 5 decay heat removal circuits
- Open design option: energy conversion system

Experimental capabilities: to contribute to the qualification of transmutation, fertile or burner subassemblies
ASTRID main innovations

Low void coefficient core with enhanced safety (« CFV »)

Tertiary circuit filled with nitrogen to prevent any sodium-water reaction

In-Service Inspection addressed since design phase

Dispositions for core melt management (no early or important radiactive release)
ASTRID Schedule

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preconceptual</td>
<td></td>
<td></td>
<td>Conceptual design</td>
<td></td>
<td></td>
<td>Basic design</td>
<td></td>
<td></td>
<td>Detailed design and Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>design</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td></td>
</tr>
</tbody>
</table>

- Preconceptual design
 - Decision to launch the conceptual design
 - Safety orientations file

- Conceptual design
 - Decision to launch the basic design
 - Safety options file

- Basic design
 - Decision to build
 - Preliminary safety report

- Detailed design and Construction
 - First criticality
 - Connection to the grid
 - Tests

ESNII+ 1st Biennial conference, Brussels, March 17, 2015 | PAGE 6
Organisation of the ASTRID project in the AVP2 phase

Contracting authority
Strategic management
ASTRID project team
Operational management
Industrial architect

About 600 people

Reliability, availability, maintainability

European R&D labs
ARDECO

R&D
Innovation, Qualifications, Codes,
Specific developments, Expertises

External assistance

EDF assistance

ASTRID relay team in Marcoule

Search for innovations
TOSHIBA
VELAN
Rolls-Royce

Assistance

Design

Reactors

Nuclear Island

Hot cells

Power conversion systems

Civil engineering

Balance of plant and infrastructures

CEA

R & D

JAA

MFBR

Mitsubishi

/R& D

About 600 people

EDF

Astrid Management

ESNII+ 1st Biennial conference, Brussels, March 17, 2015
CEA/Nuclear Energy Division is responsible for the ASTRID project

CEA has concluded bilateral industrial partnerships to cover main design engineering batches

- AREVA NP: nuclear island (core and fuel remains within CEA scope)
- EDF: support to CEA project management
- ALSTOM: turbine island
- BOUYGUES: civil engineering
- COMEX NUCLEAIRE: batches in robotics and mechanics
- TOSHIBA for development of large electromagnetic pumps
- JACOBS for the balance of plant
- ROLLS-ROYCE for innovations in fuel handling and heat exchangers
- AIRBUS D&S for RAMS methodologies
- ALCEN/SEIV for the hot cells
- JAEA/MHI/MFBR for some specific design topics and R&D
- VELAN for large sodium valves
- TECHNETICS GROUP FRANCE for innovative sealing for above core structure and robotics

On-going discussions with other companies
Partnerships around ASTRID

See next slide
European cooperation : 2 pillars

European frameworks provided by EC (FP7, H2020, EERA…)

- Several projects are relevant for SFR R&D and for supporting ASTRID
 - Dedicated to SFR : EISOFAR, CP-ESFR
 - Cross-cutting project for GenIV: ADRIANA, GETMAT, MATTER, SARGEN-IV, SILER, THINS, ANDES…

- New projects with an objective to develop an European roadmap for R&D in support to material development, safety…, and with a cross-cutting analysis on systems selected by ESNII platform
 - ESNII+ (SNETP/ESNII)
 - MATISSE (EERA/JPNM)
 - SESAME
 - SAFEST

ASTRID has several innovations and should meet a more demanding safety requirements

- R&D needs are then large.
- Schedule of European projects are more or less suitable with ASTRID options’ selection and qualification process.
- In addition to European projects and platforms, CEA is then willing to develop bilateral R&D cooperation focused on ASTRID needs.

EDF R&D, PSI, Sweden (KTH, Chalmers, Uppsala), HZDR, KIT, ENEA, JRC/ITU, NNL, CIEMAT, ...
Interactions with nuclear safety authority (ASN)

- ASTRID safety orientations submitted in June 2012
- Review by Expert Committee on Reactor Safety in June 2013
- Letter by ASN in April 2014
 - The safety orientations take into account the SFR feedback of experience in a satisfactory manner
 - No objection to continue the project on the basis of the safety orientations proposed by CEA
 - Safety level at least equivalent to EPR type reactors and taking into account lessons from Fukushima accident

- Review of 6 GIF systems by Expert Committee on Reactor Safety on April 10th, 2014
 - "Among the nuclear systems studied by the GIF, only the SFR presents a sufficient maturity to envisage the realization of a 4th generation industrial prototype in the first half of the 21st century"
Reactor site studies and infrastructures implementation
Conclusion

- With the help of our industrial and international partners, the conceptual design of ASTRID is already well in progress.

- The result of ASTRID safety orientations by the Expert Committee on Reactor Safety and ASN is very satisfactory.

- The current conceptual design phase is the opportunity to further develop our collaborations on design and/or R&D activities.

- **Next important milestones:**
 - Middle of 2015: update of the report on research carried out on the separation and transmutation of long-lived radioactive elements, and on the development of a new generation of nuclear reactors (*French Act of 2006 on waste management*)
 - End of 2015: end of ASTRID conceptual design, Safety Options Report